默认情况下,Map输出的结果会对Key进行默认的排序,但是有时候需要对Key排序的同时还需要对Value进行排序,这时候就要用到二次排序了。下面我们来说说二次排序

1、二次排序原理

我们把二次排序分为以下几个阶段

Map起始阶段

在Map阶段,使用job.setInputFormatClass()定义的InputFormat,将输入的数据集分割成小数据块split,同时InputFormat提供一个RecordReader的实现。在这里我们使用的是TextInputFormat,它提供的RecordReader会将文本的行号作为Key,这一行的文本作为Value。这就是自定 Mapper的输入是<LongWritable,Text> 的原因。然后调用自定义Mapper的map方法,将一个个<LongWritable,Text>键值对输入给Mapper的map方法

Map最后阶段

在Map阶段的最后,会先调用job.setPartitionerClass()对这个Mapper的输出结果进行分区,每个分区映射到一个Reducer。每个分区内又调用job.setSortComparatorClass()设置的Key比较函数类排序。可以看到,这本身就是一个二次排序。如果没有通过job.setSortComparatorClass()设置 Key比较函数类,则使用Key实现的compareTo()方法

Reduce阶段

在Reduce阶段,reduce()方法接受所有映射到这个Reduce的map输出后,也会调用job.setSortComparatorClass()方法设置的Key比较函数类,对所有数据进行排序。然后开始构造一个Key对应的Value迭代器。这时就要用到分组,使用 job.setGroupingComparatorClass()方法设置分组函数类。只要这个比较器比较的两个Key相同,它们就属于同一组,它们的 Value放在一个Value迭代器,而这个迭代器的Key使用属于同一个组的所有Key的第一个Key。最后就是进入Reducer的 reduce()方法,reduce()方法的输入是所有的Key和它的Value迭代器,同样注意输入与输出的类型必须与自定义的Reducer中声明的一致

接下来我们通过示例,可以很直观的了解二次排序的原理

输入文件 sort.txt 内容为

40 20 40 10 40 30 40 5 30 30 30 20 30 10 30 40 50 20 50 50 50 10 50 60

输出文件的内容(从小到大排序)如下

30 10 30 20 30 30 30 40 -------- 40 5 40 10 40 20 40 30 -------- 50 10 50 20 50 50 50 60

从输出的结果可以看出Key实现了从小到大的排序,同时相同Key的Value也实现了从小到大的排序,这就是二次排序的结果

2、二次排序的具体流程

在本例中要比较两次。先按照第一字段排序,然后再对第一字段相同的按照第二字段排序。根据这一点,我们可以构造一个复合类IntPair ,它有两个字段,先利用分区对第一字段排序,再利用分区内的比较对第二字段排序。二次排序的流程分为以下几步。

在本例中要比较两次。先按照第一字段排序,然后再对第一字段相同的按照第二字段排序。根据这一点,我们可以构造一个复合类IntPair ,它有两个字段,先利用分区对第一字段排序,再利用分区内的比较对第二字段排序。二次排序的流程分为以下几步。

1、自定义 key

所有自定义的key应该实现接口WritableComparable,因为它是可序列化的并且可比较的。WritableComparable 的内部方法如下所示

// 反序列化,从流中的二进制转换成IntPair
public void readFields(DataInput in) throws IOException

// 序列化,将IntPair转化成使用流传送的二进制
public void write(DataOutput out)

// key的比较
public int compareTo(IntPair o)

// 默认的分区类 HashPartitioner,使用此方法
public int hashCode()

// 默认实现
public boolean equals(Object right)

2、自定义分区

自定义分区函数类FirstPartitioner,是key的第一次比较,完成对所有key的排序。

public static class FirstPartitioner extends Partitioner< IntPair,IntWritable>

在job中使用setPartitionerClasss()方法设置Partitioner

job.setPartitionerClasss(FirstPartitioner.Class);

3、Key的比较类

这是Key的第二次比较,对所有的Key进行排序,即同时完成IntPair中的first和second排序。该类是一个比较器,可以通过两种方式实现。

1) 继承WritableComparator。

public static class KeyComparator extends WritableComparator

必须有一个构造函数,并且重载以下方法。

public int compare(WritableComparable w1, WritableComparable w2)

2) 实现接口 RawComparator。

上面两种实现方式,在Job中,可以通过setSortComparatorClass()方法来设置Key的比较类。

job.setSortComparatorClass(KeyComparator.Class);

注意:如果没有使用自定义的SortComparator类,则默认使用Key中compareTo()方法对Key排序。

4、定义分组类函数

在Reduce阶段,构造一个与 Key 相对应的 Value 迭代器的时候,只要first相同就属于同一个组,放在一个Value迭代器。定义这个比较器,可以有两种方式。

1) 继承 WritableComparator。

public static class GroupingComparator extends WritableComparator

必须有一个构造函数,并且重载以下方法。

public int compare(WritableComparable w1, WritableComparable w2)

2) 实现接口 RawComparator。

上面两种实现方式,在 Job 中,可以通过 setGroupingComparatorClass()方法来设置分组类。

job.setGroupingComparatorClass(GroupingComparator.Class);

另外注意的是,如果reduce的输入与输出不是同一种类型,则 Combiner和Reducer 不能共用 Reducer 类,因为

Combiner 的输出是 reduce 的输入。除非重新定义一个Combiner。

3、代码实现

Hadoop的example包中自带了一个MapReduce的二次排序算法,下面对 example包中的二次排序进行改进

package com.buaa;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.WritableComparable;
/** 
* @ProjectName SecondarySort
* @PackageName com.buaa
* @ClassName IntPair
* @Description 将示例数据中的key/value封装成一个整体作为Key,同时实现 WritableComparable接口并重写其方法
* @Author 刘吉超
* @Date 2016-06-07 22:31:53
*/
public class IntPair implements WritableComparable<IntPair>{
  private int first;
  private int second;
  public IntPair(){
  }
  public IntPair(int left, int right){
    set(left, right);
  }
  public void set(int left, int right){
    first = left;
    second = right;
  }
  @Override
  public void readFields(DataInput in) throws IOException{
    first = in.readInt();
    second = in.readInt();
  }
  @Override
  public void write(DataOutput out) throws IOException{
    out.writeInt(first);
    out.writeInt(second);
  }
  @Override
  public int compareTo(IntPair o)
  {
    if (first != o.first){
      return first < o.first "deprecation")
public class SecondarySort {
  public static class Map extends Mapper<LongWritable, Text, IntPair, IntWritable> {
    public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
      String line = value.toString();
      StringTokenizer tokenizer = new StringTokenizer(line);
      int left = 0;
      int right = 0;
      if (tokenizer.hasMoreTokens()) {
        left = Integer.parseInt(tokenizer.nextToken());
        if (tokenizer.hasMoreTokens())
          right = Integer.parseInt(tokenizer.nextToken());
        context.write(new IntPair(left, right), new IntWritable(right));
      }
    }
  }
  /*
   * 自定义分区函数类FirstPartitioner,根据 IntPair中的first实现分区
   */
  public static class FirstPartitioner extends Partitioner<IntPair, IntWritable>{
    @Override
    public int getPartition(IntPair key, IntWritable value,int numPartitions){
      return Math.abs(key.getFirst() * 127) % numPartitions;
    }
  }
  /*
   * 自定义GroupingComparator类,实现分区内的数据分组
   */
  @SuppressWarnings("rawtypes")
  public static class GroupingComparator extends WritableComparator{
    protected GroupingComparator(){
      super(IntPair.class, true);
    }
    @Override
    public int compare(WritableComparable w1, WritableComparable w2){
      IntPair ip1 = (IntPair) w1;
      IntPair ip2 = (IntPair) w2;
      int l = ip1.getFirst();
      int r = ip2.getFirst();
      return l == r "secondarysort");
    // 设置主类
    job.setJarByClass(SecondarySort.class);
    // 输入路径
    FileInputFormat.setInputPaths(job, new Path(args[0]));
    // 输出路径
    FileOutputFormat.setOutputPath(job, new Path(args[1]));
    // Mapper
    job.setMapperClass(Map.class);
    // Reducer
    job.setReducerClass(Reduce.class);
    // 分区函数
    job.setPartitionerClass(FirstPartitioner.class);
    // 本示例并没有自定义SortComparator,而是使用IntPair中compareTo方法进行排序 job.setSortComparatorClass();
    // 分组函数
    job.setGroupingComparatorClass(GroupingComparator.class);
    // map输出key类型
    job.setMapOutputKeyClass(IntPair.class);
    // map输出value类型
    job.setMapOutputValueClass(IntWritable.class);
    // reduce输出key类型
    job.setOutputKeyClass(Text.class);
    // reduce输出value类型
    job.setOutputValueClass(IntWritable.class);
    // 输入格式
    job.setInputFormatClass(TextInputFormat.class);
    // 输出格式
    job.setOutputFormatClass(TextOutputFormat.class);
    System.exit(job.waitForCompletion(true) "color: #ff0000">总结

以上所述是小编给大家介绍的hadoop二次排序的原理和实现方法,希望对大家有所帮助,如果大家有任何疑问欢迎给我留言,小编会及时回复大家的!

风云阁资源网 Design By www.bgabc.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
风云阁资源网 Design By www.bgabc.com

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?