一、格式转换
opencv读取图片的默认像素排列是BGR,需要转换。PIL库是RGB格式。
caffe底层的图像处理是基于opencv,其使用的颜色通道顺序与也是BGR(Blue-Green-Red),而日常图片存储时颜色通道顺序是RGB。
在Python中,将RGB顺序的图像转成BGR顺序,需要调整channel dimension的各颜色通道顺序。
方法1:
img = cv2.imread("001.jpg")
img_ = img[:,:,::-1].transpose((2,0,1))
① 在opencv里,图格式HWC,其余都是CHW,故transpose((2,0,1))
② img[:,:,::-1]对应H、W、C,彩图是3通道,即C是3层。opencv里对应BGR,故通过C通道的 ::-1 就是把BGR转为RGB
注: [::-1] 代表顺序相反操作
③ 若不涉及C通道的BGR转RGB,如Img[:,:,0]代表B通道,也就是蓝色分量图像;Img[:,:,1]代表G通道,也就是绿色分量图像;Img[:,:,2]代表R通道,也就是红色分量图像。
方法2:
使用opencv自带函数转换图像的R通道和B通道。
RGB -> BGR
img_bgr = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2BGR)
BGR->RGB
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
方法3:
BRG转RGB
rgb = bgr[...,::-1]
RGB转BGR
bgr = rgb[...,::-1]
RGB转GBR
gbr = rgb[...,[2,0,1]]
二、其他
添加Batch项一般是caffe2图像预处理的最后一步,在经过RGB->BGR,图像增强以及HWC->CHW后,还需要在CHW前添加一个第四维N以记录图像样本数量(即batchsize),所以输入caffe的图像格式为(N,C,H,W),其中颜色通道C的顺序是BGR。
但是对于TensorFlow这个顺序有差别。TensorFlow有两种数据格式NHWC和NCHW,默认的数据格式是NHWC,可以通过参数data_format指定数据格式。设置为 “NHWC” 时,排列顺序为 [batch, height, width, channels];设置为 “NCHW” 时,排列顺序为 [batch, channels, height, width]。
两种数据格式的转换:
NHWC –> NCHW:
import tensorflow as tf x = tf.reshape(tf.range(24), [1, 3, 4, 2]) out = tf.transpose(x, [0, 3, 1, 2])
NCHW –> NHWC:
import tensorflow as tf x = tf.reshape(tf.range(24), [1, 2, 3, 4]) out = tf.transpose(x, [0, 2, 3, 1])
补充知识:浅谈opencv使用BGR而非RGB的原因
使用opencv读取图片时, 默认的通道顺序是BGR而非RGB,在RGB为主流的当下, 这种默认给我们带来了一点不便。那么, opencv 为什么要使用BGR而非RGB呢?
目前看到的一种解释说是因为历史原因:早期BGR也比较流行,opencv一开始选择了BGR,到后来即使RGB成为主流,但也不好改了。
(这个观点未经考证,也没有严肃考证的动力, 在“碰到”新的不同解释前, 估且就这么认为吧)
References
https://stackoverflow.com/questions/14556545/why-opencv-using-bgr-colour-space-instead-of-rgb
以上这篇opencv-python的RGB与BGR互转方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 秀兰玛雅.1999-友情人【大旗】【WAV+CUE】
- 小米.2020-我想在城市里当一个乡下人【滚石】【FLAC分轨】
- 齐豫.2003-THE.UNHEARD.OF.CHYI.3CD【苏活音乐】【WAV+CUE】
- 黄乙玲1986-讲什么山盟海誓[日本东芝版][WAV+CUE]
- 曾庆瑜1991-柔情陷阱[台湾派森东芝版][WAV+CUE]
- 陈建江《享受男声》DTS-ES6.1【WAV】
- 群星《闪光的夏天 第5期》[FLAC/分轨][392.38MB]
- 徐小凤《三洋母带》1:1母盘直刻[WAV+CUE][981M]
- 王菲1995《菲靡靡之音》[香港首版][WAV+CUE][1G]
- 《双城之战》主题小游戏现已上线 扮演金克丝探索秘密基地
- 《霍格沃茨之遗》PS5Pro画面对比:光追性能显著提升
- 《怪猎荒野》PS5Pro主机版对比:B测性能都不稳定
- 黄宝欣.1992-黄宝欣金装精选2CD【HOMERUN】【WAV+CUE】
- 群星.1996-宝丽金流行爆弹精丫宝丽金】【WAV+CUE】
- 杜德伟.2005-独领风骚新歌精选辑3CD【滚石】【WAV+CUE】