数据丢失(缺失)在现实生活中总是一个问题。 机器学习和数据挖掘等领域由于数据缺失导致的数据质量差,在模型预测的准确性上面临着严重的问题。 在这些领域,缺失值处理是使模型更加准确和有效的重点。
使用重构索引(reindexing),创建了一个缺少值的DataFrame。 在输出中,NaN表示不是数字的值。
一、检查缺失值
为了更容易地检测缺失值(以及跨越不同的数组dtype),Pandas提供了isnull()和notnull()函数,它们也是Series和DataFrame对象的方法
示例1
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f','h'], columns=['one', 'two', 'three']) df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']) print(df) print('\n') print (df['one'].isnull())
输出结果:
one two three
a 0.036297 -0.615260 -1.341327
b NaN NaN NaN
c -1.908168 -0.779304 0.212467
d NaN NaN NaN
e 0.527409 -2.432343 0.190436
f 1.428975 -0.364970 1.084148
g NaN NaN NaN
h 0.763328 -0.818729 0.240498
a False
b True
c False
d True
e False
f False
g True
h False
Name: one, dtype: bool
示例2
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f', 'h'],columns=['one', 'two', 'three']) df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']) print (df['one'].notnull())
输出结果:
a True
b False
c True
d False
e True
f True
g False
h True
Name: one, dtype: bool
二、缺少数据的计算
- 在求和数据时,NA将被视为0
- 如果数据全部是NA,那么结果将是NA
实例1
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f', 'h'],columns=['one', 'two', 'three']) df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']) print(df) print('\n') print (df['one'].sum())
输出结果:
one two three
a -1.191036 0.945107 -0.806292
b NaN NaN NaN
c 0.127794 -1.812588 -0.466076
d NaN NaN NaN
e 2.358568 0.559081 1.486490
f -0.242589 0.574916 -0.831853
g NaN NaN NaN
h -0.328030 1.815404 -1.706736
0.7247067964060545
示例2
import pandas as pd df = pd.DataFrame(index=[0,1,2,3,4,5],columns=['one','two']) print(df) print('\n') print (df['one'].sum())
输出结果:
one two
0 NaN NaN
1 NaN NaN
2 NaN NaN
3 NaN NaN
4 NaN NaN
5 NaN NaN0
三、填充缺少数据
Pandas提供了各种方法来清除缺失的值。fillna()函数可以通过几种方法用非空数据“填充”NA值。
用标量值替换NaN
以下程序显示如何用0替换NaN。
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(3, 3), index=['a', 'c', 'e'],columns=['one','two', 'three']) df = df.reindex(['a', 'b', 'c']) print (df) print('\n') print ("NaN replaced with '0':") print (df.fillna(0))
输出结果:
one two three
a -0.479425 -1.711840 -1.453384
b NaN NaN NaN
c -0.733606 -0.813315 0.476788NaN replaced with '0':
one two three
a -0.479425 -1.711840 -1.453384
b 0.000000 0.000000 0.000000
c -0.733606 -0.813315 0.476788
在这里填充零值; 当然,也可以填写任何其他的值。
替换丢失(或)通用值
很多时候,必须用一些具体的值取代一个通用的值。可以通过应用替换方法来实现这一点。用标量值替换NA是fillna()函数的等效行为。
示例
import pandas as pd df = pd.DataFrame({'one':[10,20,30,40,50,2000],'two':[1000,0,30,40,50,60]}) print(df) print('\n') print (df.replace({1000:10,2000:60}))
输出结果:
one two
0 10 1000
1 20 0
2 30 30
3 40 40
4 50 50
5 2000 60one two
0 10 10
1 20 0
2 30 30
3 40 40
4 50 50
5 60 60
填写NA前进和后退
使用重构索引章节讨论的填充概念,来填补缺失的值。
方法
动作
pad/fill
填充方法向前
bfill/backfill
填充方法向后
示例1
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f', 'h'],columns=['one', 'two', 'three']) df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']) print(df) print('\n') print (df.fillna(method='pad'))
输出结果:
one two three
a -0.023243 1.671621 -1.687063
b NaN NaN NaN
c -0.933355 0.609602 -0.620189
d NaN NaN NaN
e 0.151455 -1.324563 -0.598897
f 0.605670 -0.924828 -1.050643
g NaN NaN NaN
h 0.892414 -0.137194 -1.101791
one two three
a -0.023243 1.671621 -1.687063
b -0.023243 1.671621 -1.687063
c -0.933355 0.609602 -0.620189
d -0.933355 0.609602 -0.620189
e 0.151455 -1.324563 -0.598897
f 0.605670 -0.924828 -1.050643
g 0.605670 -0.924828 -1.050643
h 0.892414 -0.137194 -1.101791
示例2
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f', 'h'],columns=['one', 'two', 'three']) df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']) print (df.fillna(method='backfill'))
输出结果:
one two three
a 2.278454 1.550483 -2.103731
b -0.779530 0.408493 1.247796
c -0.779530 0.408493 1.247796
d 0.262713 -1.073215 0.129808
e 0.262713 -1.073215 0.129808
f -0.600729 1.310515 -0.877586
g 0.395212 0.219146 -0.175024
h 0.395212 0.219146 -0.175024
四、丢失缺少的值
使用dropna函数和axis参数。 默认情况下,axis = 0,即在行上应用,这意味着如果行内的任何值是NA,那么整个行被排除。
实例1
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f','h'],columns=['one', 'two', 'three']) df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']) print (df.dropna())
输出结果 :
one two three
a -0.719623 0.028103 -1.093178
c 0.040312 1.729596 0.451805
e -1.029418 1.920933 1.289485
f 1.217967 1.368064 0.527406
h 0.667855 0.147989 -1.035978
示例2
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f', 'h'],columns=['one', 'two', 'three']) df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']) print (df.dropna(axis=1))
输出结果:
Empty DataFrame
Columns: []
Index: [a, b, c, d, e, f, g, h]
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
更新日志
- ABC唱片-鲍比达·新民乐《满江红》[APE+CUE]
- 许嵩.2014-不如吃茶去【海蝶】【WAV+CUE】
- 周笔畅.2024-HAVE.A.GOOD.NIGHT【SN.Music】【FLAC分轨】
- 周笔畅.2024-HAVE.A.NICE.DAY【SN.Music】【FLAC分轨】
- 证声音乐图书馆《真夏派对 x 迪斯可》[FLAC/分轨][380.78MB]
- 证声音乐图书馆《星空下 爵士钢琴》[320K/MP3][65.88MB]
- 证声音乐图书馆《星空下 爵士钢琴》[FLAC/分轨][283.95MB]
- 沙门怀一《竹山听雨HQ》头版限量[低速原抓WAV+CUE]
- 沙门怀一《于喁·壹HQ》头版限量编号[低速原抓WAV+CUE]
- 群星《魅音绝唱》黑胶CD【WAV】
- 腾格尔.2002-四十独白【风潮】【WAV+CUE】
- 陈明真.1992-到哪里找那么好的人【华星】【WAV+CUE】
- 黄凯芹.2012-廿五年3CD【环球】【WAV+CUE】
- 证声音乐图书馆《七夕 爵士情缘》[320K/MP3][64.8MB]
- 证声音乐图书馆《七夕 爵士情缘》[FLAC/分轨][327.79MB]