表结构如下,文章只有690篇。
文章表article(id,title,content) 标签表tag(tid,tag_name) 标签文章中间表article_tag(id,tag_id,article_id)
其中有个标签的tid是135,查询标签tid是135的文章列表。
690篇文章,用以下的语句查询,奇慢:
select id,title from article where id in( select article_id from article_tag where tag_id=135 )
其中这条速度很快:
select article_id from article_tag where tag_id=135
查询结果是五篇文章,id为428,429,430,431,432
用下面sql来查文章也很快:
select id,title from article where id in( 428,429,430,431,432 )
解决方法:
select id,title from article where id in( select article_id from (select article_id from article_tag where tag_id=135) as tbt )
其它解决方法:(举例)
mysql> select * from abc_number_prop where number_id in (select number_id from abc_number_phone where phone = '82306839');
为了节省篇幅,省略了输出内容,下同。
67 rows in set (12.00 sec)
只有67行数据返回,却花了12秒,而系统中可能同时会有很多这样的查询,系统肯定扛不住。用desc看一下(注:explain也可)
mysql> desc select * from abc_number_prop where number_id in (select number_id from abc_number_phone where phone = '82306839'); +----+--------------------+------------------+--------+-----------------+-------+---------+------------+---------+--------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+--------------------+------------------+--------+-----------------+-------+---------+------------+---------+--------------------------+ | 1 | PRIMARY | abc_number_prop | ALL | NULL | NULL | NULL | NULL | 2679838 | Using where | | 2 | DEPENDENT SUBQUERY | abc_number_phone | eq_ref | phone,number_id | phone | 70 | const,func | 1 | Using where; Using index | +----+--------------------+------------------+--------+-----------------+-------+---------+------------+---------+--------------------------+ 2 rows in set (0.00 sec)
可以看出,在执行此查询时会扫描两百多万行,难道是没有创建索引吗,看一下
mysql>show index from abc_number_phone; +------------------+------------+-------------+--------------+-----------------+-----------+-------------+----------+--------+------+------------+---------+---------------+ | Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment | +------------------+------------+-------------+--------------+-----------------+-----------+-------------+----------+--------+------+------------+---------+---------------+ | abc_number_phone | 0 | PRIMARY | 1 | number_phone_id | A | 36879 | NULL | NULL | | BTREE | | | | abc_number_phone | 0 | phone | 1 | phone | A | 36879 | NULL | NULL | | BTREE | | | | abc_number_phone | 0 | phone | 2 | number_id | A | 36879 | NULL | NULL | | BTREE | | | | abc_number_phone | 1 | number_id | 1 | number_id | A | 36879 | NULL | NULL | | BTREE | | | | abc_number_phone | 1 | created_by | 1 | created_by | A | 36879 | NULL | NULL | | BTREE | | | | abc_number_phone | 1 | modified_by | 1 | modified_by | A | 36879 | NULL | NULL | YES | BTREE | | | +------------------+------------+-------------+--------------+-----------------+-----------+-------------+----------+--------+------+------------+---------+---------------+ 6 rows in set (0.06 sec) mysql>show index from abc_number_prop; +-----------------+------------+-------------+--------------+----------------+-----------+-------------+----------+--------+------+------------+---------+---------------+ | Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment | +-----------------+------------+-------------+--------------+----------------+-----------+-------------+----------+--------+------+------------+---------+---------------+ | abc_number_prop | 0 | PRIMARY | 1 | number_prop_id | A | 311268 | NULL | NULL | | BTREE | | | | abc_number_prop | 1 | number_id | 1 | number_id | A | 311268 | NULL | NULL | | BTREE | | | | abc_number_prop | 1 | created_by | 1 | created_by | A | 311268 | NULL | NULL | | BTREE | | | | abc_number_prop | 1 | modified_by | 1 | modified_by | A | 311268 | NULL | NULL | YES | BTREE | | | +-----------------+------------+-------------+--------------+----------------+-----------+-------------+----------+--------+------+------------+---------+---------------+ 4 rows in set (0.15 sec)
从上面的输出可以看出,这两张表在number_id字段上创建了索引的。
看看子查询本身有没有问题。
mysql> desc select number_id from abc_number_phone where phone = '82306839'; +----+-------------+------------------+------+---------------+-------+---------+-------+------+--------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+------------------+------+---------------+-------+---------+-------+------+--------------------------+ | 1 | SIMPLE | abc_number_phone | ref | phone | phone | 66 | const | 6 | Using where; Using index | +----+-------------+------------------+------+---------------+-------+---------+-------+------+--------------------------+ 1 row in set (0.00 sec)
没有问题,只需要扫描几行数据,索引起作用了。
查询出来看看:
mysql> select number_id from abc_number_phone where phone = '82306839'; +-----------+ | number_id | +-----------+ | 8585 | | 10720 | | 148644 | | 151307 | | 170691 | | 221897 | +-----------+ 6 rows in set (0.00 sec)
直接把子查询得到的数据放到上面的查询中
mysql> select * from abc_number_prop where number_id in (8585, 10720, 148644, 151307, 170691, 221897); 67 rows in set (0.03 sec)
速度也快,看来MySQL在处理子查询的时候是不够好。我在MySQL 5.1.42 和 MySQL 5.5.19 都进行了尝试,都有这个问题。
搜索了一下网络,发现很多人都遇到过这个问题:
参考资料1:MySQL优化之使用连接(join)代替子查询
参考资料2:MYSQL子查询和嵌套查询优化实例解析
根据网上这些资料的建议,改用join来试试。
修改前:
select * from abc_number_prop where number_id in (select number_id from abc_number_phone where phone = '82306839');
修改后:
select a.* from abc_number_prop a inner join abc_number_phone b on a.number_id = b.number_id where phone = '82306839'; mysql> select a.* from abc_number_prop a inner join abc_number_phone b on a.number_id = b.number_id where phone = '82306839'; 67 rows in set (0.00 sec)
效果不错,查询所用时间几乎为0。看一下MySQL是怎么执行这个查询的
mysql>desc select a.* from abc_number_prop a inner join abc_number_phone b on a.number_id = b.number_id where phone = '82306839'; +----+-------------+-------+------+-----------------+-----------+---------+-----------------+------+--------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+------+-----------------+-----------+---------+-----------------+------+--------------------------+ | 1 | SIMPLE | b | ref | phone,number_id | phone | 66 | const | 6 | Using where; Using index | | 1 | SIMPLE | a | ref | number_id | number_id | 4 | eap.b.number_id | 3 | | +----+-------------+-------+------+-----------------+-----------+---------+-----------------+------+--------------------------+ 2 rows in set (0.00 sec)
小结:当子查询速度慢时,可用JOIN来改写一下该查询来进行优化。
网上也有文章说,使用JOIN语句的查询不一定总比使用子查询的语句快。
mysql手册也提到过,具体的原文在mysql文档的这个章节:
I.3. Restrictions on Subqueries
13.2.8. Subquery Syntax
摘抄:
1)关于使用IN的子查询:
Subquery optimization for IN is not as effective as for the = operator or for IN(value_list) constructs.
A typical case for poor IN subquery performance is when the subquery returns a small number of rows but the outer query returns a large number of rows to be compared to the subquery result.
The problem is that, for a statement that uses an IN subquery, the optimizer rewrites it as a correlated subquery. Consider the following statement that uses an uncorrelated subquery:
SELECT ... FROM t1 WHERE t1.a IN (SELECT b FROM t2);
The optimizer rewrites the statement to a correlated subquery:
SELECT ... FROM t1 WHERE EXISTS (SELECT 1 FROM t2 WHERE t2.b = t1.a);
If the inner and outer queries return M and N rows, respectively, the execution time becomes on the order of O(M×N), rather than O(M+N) as it would be for an uncorrelated subquery.
An implication is that an IN subquery can be much slower than a query written using an IN(value_list) construct that lists the same values that the subquery would return.
2)关于把子查询转换成join的:
The optimizer is more mature for joins than for subqueries, so in many cases a statement that uses a subquery can be executed more efficiently if you rewrite it as a join.
An exception occurs for the case where an IN subquery can be rewritten as a SELECT DISTINCT join. Example:
SELECT col FROM t1 WHERE id_col IN (SELECT id_col2 FROM t2 WHERE condition);
That statement can be rewritten as follows:
SELECT DISTINCT col FROM t1, t2 WHERE t1.id_col = t2.id_col AND condition;
But in this case, the join requires an extra DISTINCT operation and is not more efficient than the subquery
总结
以上就是本文关于mysql in语句子查询效率慢的优化技巧示例的全部内容,感兴趣的朋友而可以参阅:浅谈mysql的子查询联合与in的效率、企业生产MySQL优化介绍等,有什么问题可以留言,欢迎大家一起交流参考。
希望本文所述对大家有所帮助。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]